Солнечно-земная
ИСЗФ СО РАН, Иркутск |
Солнечная корона является с одной стороны, ключом к пониманию процессов, протекающих на Солнце, и, с другой стороны, важным предвестником и индикатором последующих событий в гелиосфере. Методы экспериментального исследования короны - это наблюдения излучения отдельных линий короны или участков спектра ее излучения. Основным методом исследования тонкой структуры короны и ее динамики являются наблюдения, так называемой белой короны, а именно, рассеянного на электронах короны фотосферного излучения Солнца. - Это томпсоновское рассеяние изотропное и без дисперсии. Такое рассеянное излучение поляризовано и в условиях короны имеет максимальную интенсивность под углом 90o к направлению падающего на электрон фотосферного излучения. Таким образом, с его помощью можно исследовать корональные процессы, протекающие, главным образом, в картинной плоскости и вблизи нее. Интенсивность рассеянного излучения пропорциональна средней вдоль луча зрения земного наблюдателя концентрации плазмы короны. Условно процессы в короне с характерными временами t > 1 сут (достигающие недель, месяца) называют квазистационарными, а с t < 1 сут - спорадическими. В отсутствие спорадических процессов (или если они слабые), корона является квазистационарной. Анализу такой короны посвящается первая часть лекции.
Исследование квазистационарной короны в белом свете - это, прежде всего, изучение наиболее яркой ее составляющей - пояса корональных стримеров. Поперечное сечение пояса стримеров на изображениях короны видно в виде повышенной яркости шлема, переходящего при удалении от Солнца в узкий луч. Все предыдущие исследования по этой теме можно разбить на два больших периода - до запуска в конце 1995 г. космического аппарата SOHO (Solarand Heliospheric Observatory) с инструментом LASCO (Large Angle Spectrometric Coronograph) на борту и после его запуска до настоящего времени. LASCO - это три совмещенных коронографа с концентрическими и перекрывающимися полями зрения.
Исследования квазистационарной короны до конца 1995 г. - это, главным образом, изучение крупномасштабной глобальной структуры пояса стримеров с временным разрешением, равным солнечному обороту (~ 27 сут). Начало работы инструмента LASCO в декабре 1995 г. открыло возможности для изучения тонкой лучевой структуры пояса стримеров короны с временным разрешением меньше 1 ч и пространственным разрешением меньше 0.2o на расстоянии (5-6)Rо от центра Солнца (Rо - радиус Солнца). Здесь и далее угловой размер берется в единицах дуги диска Солнца, т.е. круг Солнца соответствует 360o. Тонкая лучевая структура пояса стримеров во многом определяет физику протекающих в них процессов.
Стримеры в короне при наблюдении в белом свете видны как лучеобразные структуры повышенной яркости, отражающие собой особенности распределения формирующего их магнитного поля. По своим глобальным характеристикам их совокупность в пространстве представляет собой охватывающий Солнце пояс стримеров (поверхность), толщиной в несколько градусов, внутри которого течет медленный солнечный ветер с повышенной плотностью плазмы, превышающей в несколько раз плотность окружающей плазмы.
Пояс стримеров в короне разделяет области с противоположной полярностью радиального магнитного поля Солнца (или магнитные трубки открытых силовых линий противоположной полярности, исходящих из соседних корональных дыр) [12, 10, 8]. Это означает, что вдоль пояса проходит нейтральная линия радиального магнитного поля, положение которой получается из расчетов магнитного поля в короне в потенциальном приближении [1, 13]. В гелиосферном пространстве такой пояс представляет собой «юбку» повышенной плотности и давления, изгибающуюся вокруг Солнца, которую называют гелиосферным плазменным слоем [2].
Основание пояса стримеров на Солнце является местом рождения корональных выбросов вещества (CME) [9, 11, 4, 7], а гелиосферный плазменный слой оказывает существенное влияние на формирование и распространение ударных волн [3, 5].
Кроме этого, существуют ответвления поясов стримеров, которые разделяют области в короне с одинаковой полярностью радиального магнитного поля (или магнитные трубки соседних корональных дыр, имеющих одинаковую полярность) [6, 4, 7]. Рассчитанные структуры магнитного поля под шлемами пояса стримеров с нейтральной линией имеют вид одиночных арок, а под шлемами цепочек стримеров - вид двойных арок.
В течение цикла солнечной активности происходит сравнительно медленная эволюция пояса стримеров, в процессе которой увеличивается отклонение участков пояса к полюсам от экватора. Характерное время этой эволюции для минимума активности Солнца сравнимо с периодом кэррингтоновского оборота.
Методы исследования
В перечисленных выше исследованиях пояс стримеров представляется как сплошной, не имеющий внутренней структуры, узкий слой толщиной ~ 3o Однако для понимания физики протекающих внутри пояса процессов необходимо исследовать его тонкую (внутреннюю) лучевую структуру. Для этого нужен непрерывный длительный ряд изображений белой короны с временным разрешением меньше 1 ч и угловым разрешением меньше 1o Принципиальная возможность таких исследований появилась с запуском КА SOHO с инструментом LASCO на борту. Прибор дает изображения в картинной плоскости белой короны, яркость которой в каждой точке усреднена вдоль луча зрения. Вследствие этой особенности невозможно отделить наблюдаемые в поясе стримеров изменения яркости во времени, являющиеся проявлением пространственной неоднородности пояса, от истинных временных изменений яркости. Чтобы обойти эту трудность, исследовались участки пояса, вытянутые вдоль долготы (т.е. параллельные лимбу Солнца), в те моменты времени, когда они проходили вблизи западного или восточного лимбов. Это позволило изучить структуру яркости вдоль пояса в выбранный момент времени, т.е. разделить, фактически, пространственные и временные изменения яркости в короне.
Наблюдаемая структура - это мгновенная картина и не известно, как долго она существует. Чтобы оценить ее время жизни, проведем следующий анализ.
Пусть узкий в направлении вращения луч, вращаясь вместе с Солнцем, пересекает плоскость лимба. На заданном R он будет характеризоваться двумя параметрами: яркостью Р и проекцией его широты λ на картинную плоскость.
Последний параметр изменяется со временем и характер этого изменения зависит от широты луча λ на Солнце и гелиографической широты центра Солнца Bo. Поэтому на синоптической карте луч опишет некую кривую. При Bo = 0 величина возрастает от значения λ = симметрично при удалении в обе стороны от плоскости лимба. При Bo 0 картина заметно усложняется лишь вблизи экватора. При наблюдении на лимбе узкий луч будет наблюдаться в направлении вращения широким, с характерным угловым размером ~ 70o .
Эффект зависимости кривых ( ) ( - угловое отклонение луча от картиннойплоскости ) (или λ (t)) от и Bo для каждого отдельного луча при 0 приводит к разделению в каждый момент времени соседних лучей, расположенных в пределах протяженного вдоль параллели участка пояса стримеров, так как они оказываются на разных угловых смещениях от картинной плоскости, а, следовательно, имеют разную видимую широту λ . Наиболее четко, таким образом выделяются лучи, оказавшиеся в вершине изгиба пояса стримеров, максимально удаленной на север или юг от солнечного экватора [Еselevich, 2000]. Поэтому такие лучи наряду с лучами, формирующими часть пояса стримеров, расположенного вдоль меридиана, и использовались для анализа.
Исследования проводились по данным яркости белой короны, в основном, прибора LASCO C2 космического аппарата SOHO, а также LASCO С1, C3, доступным в системе Internet с уровнем обработки L1.
Определение яркости луча PR в условных единицах, углового размера луча d. Некоторые характеристики лучей пояса стримеров
Для каждого изображения, полученного из ежедневных MPG файлов, строились распределения яркости Р короны в зависимости от проекции широты на картинную плоскость λ на разных расстояниях R от центра Солнца отдельно для Е или W лимбов. Отсчет λ к северу от солнечного экватора - положительный, к югу - отрицательный.
Типичный вид части такого распределения на Е лимбе в случае, когда пояс стримеров перпендикулярен картинной плоскости, показан на рис. 1, а в случае пояса, вытянутого вдоль лимба - на рис. 2. На профиле рис. 1 четко виден один максимум яркости (луч), на рис. 2 - несколько лучей.
Рис. 1. Характерные профили распределений от угла в случае, когда рассматриваемый участок пояса стримеров перпендикулярен плоскости неба: верх - яркости Р стримеров белой короны; низ - лучевой яркости РR = (Р - РS), где кривая сглаживания РS. Данные LASCO C2 30.07.96 08:05, Е лимб, R = 4.5Rо.
Рис. 2. Характерные профили распределений от угла λ в случае, когда рассматриваемый участок пояса стримеров вытянут вдоль меридиана: верх - яркости Р стримеров белой короны; низ - лучевой яркости РR = (Р - РS). Данные LASCO C2 26.07.96 15:49, Е лимб, R = 4.5Rо.
Для исследования свойств лучей введем следующие характеристики: яркость луча PR, угловой размер d.
Для выделения луча и определения его характеристик PR и d использовался следующий прием: для каждого профиля находилась сглаженная кривая путем усреднения по углу 6 - 7o (пунктирная кривая PS на рис. 1 и 2). Затем эта усредненная кривая вычиталась из первоначального профиля. Результат этой процедуры показан на нижних рис. 1 и 2. Все дальнейшие исследования проводились с лучевой яркостью PR.
Было показано, что для лучей А - F угловой размер d ~ 2-4o и практически не меняется на расстояниях (4 - 6)R¤. С точностью не хуже ±1.5o все лучи радиальные на расстояниях R = (4 - 15)R¤.
На рис. 3 светлыми кружками нанесены экспериментальные местоположения лучей на профиле яркости на Е лимбе, показанном на нижнем рис. 1, в последовательные моменты времени (профили строились на расстоянии 4.5 Rо от центра Солнца). Сплошными тонкими линиями показаны теоретические кривые, при расчете которых подбирались параметры и Bo таким образом, чтобы они лучшим образом совпадали с экспериментальными. Как видно, согласие расчетных и экспериментальных кривых достаточно хорошее. Большими черными кружками показаны положения лучей в тот момент, когда они лежат в плоскости лимба.
Из рис. 3. видно, что отдельные лучи надежно прослеживаются как минимум в течение нескольких суток, а луч С - в течении почти 10 сут. Таким образом, мы приходим к важному выводу о том, что пояс стримеров на расстояниях ~ (4-6) Rо представляет собой последовательность лучей повышенной яркости (плотности плазмы), характерное время существования отдельного луча может достигать 10 сут.
Очень часто в случаях, когда пояс стримеров перпендикулярен картинной плоскости, на R > 2-3 Rо наблюдается не один, а два близко расположенных луча (расстояние между лучами порядка диаметра луча). Это означает, что в общем случае пояс стримеров представляет собой последовательность пар близко расположенных лучей повышенной, но различной яркости.
Рис. 3. Часть синоптической карты CR1912. Толстая сплошная линия - нейтральная линия.
Исследования показали, что на расстояниях R, меньших высоты шлема стримера, каждый из двух соседних лучей пояса при продвижении к поверхности Солнца огибает шлем по разные его стороны. При этом минимальный угловой диаметр лучей ~ - 3o остается практически постоянным на R = (1.2-6.0). Направление магнитного поля в этих лучах противоположное.
Рис. 4. Лучевая структура пояса стримеров.
Полученная на основе проведенных исследований квазистационарная структура пояса стримеров представлена на рис. 4. Знание этой структуры позволяет сделать важный шаг в понимании физических основ возмущений в околоземной среде, вызываемых текущим в этих структурах квазистационарным медленным СВ.
К настоящему времени можно считать
установленными основные типы энергетических потоков (частиц и излучения) от
Солнца, воздействие которых приводит к тому или иному характеру возмущенности в
околоземной среде (магнитосфере, ионосфере и атмосфере Земли):
а) потоки
сравнительно плотной (n ~ 1-70 см-3 на орбите Земли)
квазинейтральной и низкоэнергичной (Е < 10 кэ в) плазмы солнечного
ветра, вызывающие магнитосферные и ионосферные бури с длительностью от 1 сут и
более;
б) потоки энергичных (Е ~ 10-100 МэВ) «вспышечных» протонов
малой плотности (n ~ 10-10-10-7
см-3) длительностью порядка нескольких часов, вызывающие
явление «поглощения в полярной шапке» (ППШ);
в) всплески потоков
ультрафиолетового излучения от солнечных вспышек, вызывающие изменения
концентрации в различных областях ионосферы, с характерным временем порядка 1
час;
г) всплески потоков мягкого и жесткого рентгеновского излучения от
вспышек, вызывающие внезапные ионосферные возмущения в D-области ионосферы,
характерное время - несколько минут.
Наиболее сильную глобальную перестройку магнитосферы и ионосферы вызывают потоки типа (а). Поэтому их изучению уделяется основное внимание на начальном этапе работ по прогнозированию и в этом докладе. Физическая суть метода прогноза возмущений в околоземной среде состоит в следующем:
К настоящему времени достаточно надежно установлено, что СВ типа (а) могут быть разбиты на два больших класса: квазистационарные потоки СВ, время жизни источников которых t более суток, и спорадические потоки СВ, источники которых характеризуются величиной t менее суток. В свою очередь квазистационарный СВ подразделяется на два типа: быстрый СВ, истекающий из области корональных дыр и достигающий на орбите Земли V ~ 400-800 км/с и медленный СВ, текущий в поясе стримеров или цепочках стримеров, с V ~ 250-400 км/с, исследованию которого посвящена первая часть лекции. Пространственное распределение казистационарных потоков СВ в гелиосфере показано на рис. 5. Основными источниками спорадического СВ являются выбросы корональной массы включающие в себя эруптивное волокно и возможно, вспышки.
Рис. 5. Вид Солнца и гелиосферы от Земли.
Знание источников потоков СВ различных типов и их характеристик на Солнце позволяет рассчитать, а значит прогнозировать параметры СВ на 1 а.е. и связанные с ними индексы геомагнитной активности в зависимости от времени. В свою очередь, знание КР (t) и АР(t) дает возможность, используя модели возмущенных магнитосферы и ионосферы, определить положения наиболее важных пространственных структур: границы плазменного слоя, границы плазмосферы, а также место и время начала суббури и положение главного ионосферного провала.
На рис. 6 показан вид Солнца и гелиосферы из точки над полюсом Солнца. Поскольку плазма СВ дви-жется радиально, на расстояниях R > 20Rо (Rо - радиус Солнца) быстрый СВ догоняет медленный СВ и сталкивается с ним. При их столкновении формируется область взаимодействия (IR). Она представляет собой узкий слой (несколько градусов), в котором резко меняются параметры СВ. IR - главный источник геомагнитных бурь. Поэтому для квазистационарных потоков СВ прогнозирование момента прихода на 1 а.е. и его характеристик является первоочередной задачей.
Рис. 6. Вид Солнца и гелиосферы из точки над полюсом.
Корональные дыры (КД) в свете линии 10830 Å считаются одним из наиболее надежных индикаторов источников быстрого СВ на Солнце. Однако в отдельные периоды солнечной активности прогноз параметров быстрого СВ на 1 а.е. с использованием КД может иметь весьма невысокую оправдываемость. Возможным выходом из этого положения является использование в качестве индикаторов источников быстрого СВ оснований открытых трубок магнитного (ООМТ) поля Солнца, рассчитанных по фотосферным магнитным полям с временным разрешением, равным времени получения магнитограммы Солнца, т.е. порядка 1 час. Метод таких расчетов развит и реализован в виде действующего сайта института в сети Internet. Этому прибору в ближайшие годы предстоит стать основным как в фундаментальных исследованиях по солнечно-земной физике, так и в системе мониторинга и прогноза программы «Космическая погода».
Наиболее сильные геомагнитные возмущения вызываются спорадическими потоками СВ, распространяющимися, как правило, по квазистационарному СВ.
В отдельных редких случаях возможна последовательность следующих друг за другом спорадических потоков. Они вызывают самые мощные возмущения магнитосферы и ионосферы Земли. В общем случае структура спорадического потока показана на рис. 7. Она представляет собой последовательность ударной волны, ударно нагретой плазмы и магнитного поршня (магнитное облако). Воздействие ударной волны на магнитосферу проявляется в виде внезапного начала (SSC). Вблизи Солнца в короне спорадические потоки наблюдаются на лимбе в белом свете в виде корональных выбросов массы (СМЕ).
Рис. 7. Типичный вид связанного с СМЕ спорадического потока в гелиосфере.
Принципы прогнозирования геомагнитных возмущений, вызываемых спорадическими потоками СВ, те же, что и для квазистационарного СВ. Однако их эффективное воплощение во многом зависит от прогресса в решении следующих двух проблем:
1. Способы регистрации рождения СМЕ на
диске Солнца и определения их характеристик. В настоящее время известны как
минимум 5 методов регистрации СМЕ на диске Солнца:
а) прямые наблюдения СМЕ
в линии 195 Å;
б) по уменьшению светимости в области мягкого рентгена в
месте образования СМЕ (dimming);
в) по рождению короткоживущих КД при
наблюдении в линиях 10830 Å и крайнего ультрафиолета;
г) по динамике границ
рядом расположенных КД, сопровождающей возникновение СМЕ;
д) по
LDE-вспышкам, регистрируемым в мягком рентгене.
На данном этапе эти пять методов
не обеспечивают регистрацию всех возникающих СМЕ на диске Солнца. Новые
перспективы в определении источников открывают исследования динамики магнитных
полей в солнечной атмосфере в момент возникновения спорадического потока СВ по
данным сайта института, имеющих необходимое высокое временное.
2. Знание закономерностей распространения спорадических потоков в межпланетном пространстве: взаимодействия спорадического потока с квазистационарным СВ, по которому он распространяется к Земле; определения знака и максимальной величины Вz->компоненты за фронтом ударной волны и в области магнитного поршня.
Имеющиеся в настоящее время методы для решения этих проблем позволяют осуществлять прогноз даже наиболее сильных магнитных бурь (Кр > 6) с оправдываемостью не лучше, чем 70 - 75 %. Наши предварительные исследования показали, что для периода вблизи минимума солнечной активности 1996 - 1997 гг. оправдываемость прогноза потоков быстрого СВ по КД может составить около 30 %, в то время, как по ООМТ она превышает 90 %.
Учитывая это, а также тот факт, что наблюдения Солнца в различных диапазонах длин волн дают очень ограниченную, противоречивую и, главным образом, морфологическую (не количественную) информацию, можно с уверенностью сказать, что основой количественных исследований квазистационарного СВ и его прогноза в ближайшие годы станут магнитные поля на поверхности Солнца.
1. Пояс стримеров, в котором течет квазистационарный медленный солнечный ветер, на расстояниях R > (3-4)Ro от центра Солнца представляет собой последовательность пар радиальных лучей повышенной яркости. На расстояниях R, меньших высоты шлема стримера, каждый из пары лучей при продвижении к поверхности Солнца огибает шлем по разные его стороны. При этом минимальный угловой диаметр лучей » 2-3њ остается практически постоянным на R = (1.2-6.0) Ro. Направление магнитного поля в лучах каждой пары противоположное.
2. Прогресс в прогнозировании геомагнитных возмущений, вызываемых квазистационарными потоками СВ, в ближайшие годы будет определяться, в первую очередь, успехами фундаментальных исследований динамики магнитных структур с временным разрешением около 1 час, которые ежедневно появляются на сайте института (http://iszf.irk.ru/). Вопрос о роли такой динамики в формировании спорадических потоков СВ находится в стадии поисковых исследований.
3. Прогресс в прогнозировании
геомагнитных возмущений, вызываемых спорадическими потоками СВ, зависит от
решения в ближайшем будущем двух проблем:
а) разработка методов регистрации
рождения СМЕ на диске Солнца и измерение их характеристик;
б) выяснение
природы возникновения Bz-компоненты в различных областях
спорадических потоков СВ.
1. Burlaga L.F., Hundhausen A.J., Zhao Xue-pu. The coronal and interplanetary current sheet in early 1976 // J. Geophys. Res. 1981. V. 86. P. 8893.
2. Crooker N.U., Siscoe G.L., Shodhan S. et al. Multiple heliospheric current sheets and coronal streamer belt dynamics // J. Geophys. Res. 1993. V. 98. P. 9371.
3. Eselevich V.G. Solar flare: geoeffectiveness and the possibility of a new classification // Planet. Space Sci. 1990. V. 38. P. 189.
4. Eselevich V.G., New results on the site of initiation of coronal mass ejections // Geophys. Res. Lett. 1995. V. 22(20). P. 2681.
5. Eselevich V.G., Fainshtein V.G., Filippov M.A. On the problem of the geoeffectiveness of sporadic phenomena on the Sun // Planet. Space Sci. 1988. V. 36. P. 1015.
6. Eselevich V.G., Fainshtein V.G. On the existence of the heliospheric current sheet without a neutral line (HCS without NL) // Planet. Space Sci. 1992. V. 40. P. 105.
7. Eselevich V.G., Tong Y. New results on the site of initiation of coronal mass ejections, and an interpretation of observation of their interaction with streamers // J. Geophys. Res. 1997. V. 102. P. 4681.
8. Gosling J.T., Borrini G., Asbridge J.R. et al. Coronal streamers in the solar wind at 1 a.u. // J. Geophys. Res. 1981. V. 82. P. 5438.
9. Hundhausen A.J. Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984 - 1989 // J. Geophys. Res. 1993. V. 98. P. 13177.
10. Korzhov N.P. Large-scale three dimensional structure of the interplanetary magnetic field // Solar Phys. 1977. V. 55. P. 505.
11. Mendoza, B., Perez-Enriquez R. Association of coronal mass ejections with the heliomagnetic current sheet // J. Geophys. Res. 1993. V. 98. P. 9365.
12. Svalgaard L., Wilcox J.M., Duvall T.L. A model combining the solar and sector structured polar magnetic field // Solar Phys. 1974. V. 37. P.157.
13. Wilcox J.M., Hundhausen A.J. Comparison of heliospheric current sheet structure obtained from potential magnetic field computations and from observed polarization coronal brightness // J. Geophys. Res. 1983. V. 88. P. 8095.
Доклад представлен на Байкальской школе ИСЗФ СО РАН, Иркутск, 2002
и опубликован на сайте http://bsfp.iszf.irk.ru/bsfp2002/articles/